A New Cuckoo Search Based Levenberg-Marquardt (CSLM) Algorithm
نویسندگان
چکیده
Back propagation neural network (BPNN) algorithm is a widely used technique in training artificial neural networks. It is also a very popular optimization procedure applied to find optimal weights in a training process. However, traditional back propagation optimized with Levenberg marquardt training algorithm has some drawbacks such as getting stuck in local minima, and network stagnancy. This paper proposed an improved Levenberg-Marquardt back propagation (LMBP) algorithm integrated and trained with Cuckoo Search (CS) algorithm to avoided local minima problem and achieves fast convergence. The performance of the proposed Cuckoo Search Levenberg-Marquardt (CSLM) algorithm is compared with Artificial Bee Colony (ABC) and similar hybrid variants. The simulation results show that the proposed CSLM algorithm performs better than other algorithm used in this study in term of convergence rate and accuracy.
منابع مشابه
CSLMEN: A New Optimized Method for Training Levenberg Marquardt Elman Network Based Cuckoo Search Algorithm
RNNs have local feedback loops within the network which allows them to shop earlier accessible patterns. This network can be educated with gradient descent back propagation and optimization technique such as second-order methods; conjugate gradient, quasi-Newton, Levenberg-Marquardt have also been used for networks training [14, 15]. But still this algorithm is not definite to find the global m...
متن کاملImproved Cuckoo Search Based Neural Network Learning Algorithms for Data Classification Abdullah
Artificial Neural Networks (ANN) techniques, mostly Back-Propagation Neural Network (BPNN) algorithm has been used as a tool for recognizing a mapping function among a known set of input and output examples. These networks can be trained with gradient descent back propagation. The algorithm is not definite in finding the global minimum of the error function since gradient descent may get stuck ...
متن کاملApplication of Cuckoo Search Algorithm for Surface Roughness Optimization in Co2 Laser Cutting
In this paper, empirical modeling of surface roughness in CO2 laser cutting of stainless steel using was presented. Mathematical modeling was based on using feed forward neural network by exploiting experimental measurements obtained from the Taguchi’s L27 experimental design. The mathematical models of surface roughness was expressed as explicit nonlinear functions of the selected input parame...
متن کاملA new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations
In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...
متن کاملOne-Dimensional Modeling of Helicopter-Borne Electromagnetic Data Using Marquardt-Levenberg Including Backtracking-Armijo Line Search Strategy
In the last decades, helicopter-borne electromagnetic (HEM) method became a focus of interest in the fields of mineral exploration, geological mapping, groundwater resource investigation and environmental monitoring. As a standard approach, researchers use 1-D inversion of the acquired HEM data to recover the conductivity/resistivity-depth models. Since the relation between HEM data and model ...
متن کامل